Appendix J
Conditions for Near-Equivalence between
dG'(v)/dv and a(v,v), and between
d*Gi(v)/av? and da(v,v)/dv

Since p = p'(v) marks a stationary point for G[p,v] where 4G /dp =0, it
follows from Eq. (13.2) that
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Carrying out this program in Eq. (J-1) and using the asymptotic form for
Glp,v] given in Eq. (5.7-2), we have
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where y = Kg,l(v—a)) . Here x is a chosen point where the accuracy of the
asymptotic forms for the Airy functions is deemed adequate when p = x. From
geometric optics, we have from Eqgs. (5.6-2) and (5.6-15)
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Comparison of Egs. (J-2) and (J-3) yields for dG[p'(v),v]/ dv
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From Eq. (5.6-2), we have
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Integrating by parts and using Eq. (5.4-3) to express the end value in terms of
y, one obtains
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We can continue integrating Eq. (J-6) by parts. It is clear that by successive
integrations we can build up a series of terms, all evaluated at p = x. Similarly,

in Eq. (J-4) for dG[p’(v),v]/dv, we have
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It is readily shown that
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Thus, even for x as low asx =v + 2K, the end terms in Egs. (J-6) and (J-7) are
equal to three significant figures. When n(p) is slowly varying, it follows that
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The accuracy with which Eq. (J-10) holds depends on the curvature in
n(p), provided that we choose x > v so that the asymptotic forms for the Airy
functions are not significantly in error. For the examples shown in Figs. 5-4 and
5-5,K,/H~ 1073, that is, dn/ dp is slowly varying relative to the range of y
values (~ -2 =<y =<2) across which the Airy functions make their transition to
asymptotic forms. This ratio is generally small for thin atmosphere conditions.

The accuracy of Eq. (J-10) can be checked by comparison of end terms at
p = x after successive integration by parts in Eqgs. (J-6) and (J-7). For example,

for the next integration by parts, it can be shown that
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where T'(y) has been given in Eq. (4.9-5) and shown in Fig. 5-12. Thus, the
difference between Egs. (J-6) and (J-7) in the end terms after a second
integration by parts is about 0.2va”/n. If pd*n/dp* <<a, then a close
correspondence between spectral number in wave theory and impact parameter
in ray theory should hold. For an exponential refractivity profile in terms of an
impact parameter scale height H ,, the inequality pdzn/ d/o2 << a translates

into the scale height inequality, H, >> k'l(ro /)»)1/3 ~0.01km. However, H,
is an impact parameter scale height. It relates to a distance scale height H, by
H,=(dp/dr)H, = H, + Nr. Therefore, a value H,=0 corresponds to a
boundary of a locally super-refracting medium; the critical gradient is
dn/dr=-n/r, or H,=15km. Bending angles are no longer defined for
dn/dr <-n/r when the tangency point of the corresponding ray lies within
such a layer, or even below it if it is too near the lower boundary.

It follows that when dn / dp is slowly varying relative to y (i.e., the change
in refractivity gradient over the Airy function transition width, from an
exponential form to a sinusoidal form, 4K, is very small), and specifically
when a super-refracting medium is avoided, this near-equivalence between
dG /[ dv and a(v,v) holds. We have from Egs. (J-4) and (J-11)
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Similarly, it can be shown from Eqgs. (J-1) through (J-11) that
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